79 research outputs found

    On the Performance Gap of a Generic C Optimized Assembler and Wide Vector Extensions for Masked Software with an Ascon-{\it{p}} test case

    Get PDF
    Efficient implementations of software masked designs constitute both an important goal and a significant challenge to Side Channel Analysis attack (SCA) security. In this paper we discuss the shortfall between generic C implementations and optimized (inline-) assembly versions while providing a large spectrum of efficient and generic masked implementations for any order, and demonstrate cryptographic algorithms and masking gadgets with reference to the state of the art. Our main goal is to show the prime performance gaps we can expect between different implementations and suggest how to harness the underlying hardware efficiently, a daunting task for various masking-orders or masking algorithm (multiplications, refreshing etc.). This paper focuses on implementations targeting wide vector bitsliced designs such as the ISAP algorithm. We explore concrete instances of implementations utilizing processors enabled by wide-vector capability extensions of the AMD64 Instruction Set Architecture (ISA); namely, the SSE2/3/4.1, AVX-2 and AVX-512 Streaming Single Instruction Multiple Data (SIMD) extensions. These extensions mainly enable efficient memory level parallelism and provide a gradual reduction in computation-time as a function of the level of extension and the hardware support for instruction-level parallelism. For the first time we provide a complete open-source repository of such gadgets tailored for these extensions, various gadgets types and for all orders. We evaluate the disparities between generic\mathit{generic} high-level language masking implementations for optimized (inline-) assembly and conventional single execution path data-path architectures such as the ARM architecture. We underscore the crucial trade-off between state storage in the data-memory as compared to keeping it in the register-file (RF). This relates specifically to masked designs, and is particularly difficult to resolve because it requires inline-assembly manipulations and is not natively supported by compilers. Moreover, as the masking order (dd) increases and the state gets larger, there must be an increase in data memory read/write accesses for state handling since the RF is simply not large enough. This requires careful optimization which depends to a considerable extent on the underlying algorithm to implement. We discuss how full utilization of SSE extensions is not always possible; i.e. when dd is not a power of two, and pin-point the optimal dd values and very sub-optimal values of dd which aggressively under-utilize the hardware. More generally, this paper presents several different fully generic masked implementations for any order or multiple highly optimized (inline-) assembly instances which are quite generic (for a wide spectrum of ISAs and extensions), and provide very specific implementations targeting specific extensions. The goal is to promote open-source availability, research, improvement and implementations relating to SCA security and masked designs. The building blocks and methodologies provided here are portable and can be easily adapted to other algorithms

    SCMA: Plaintext Classification Assisted Side Channel Spectral Modulation Attacks. Towards Noise-insensitive SCA Attacks...

    Get PDF
    Side-channel analysis (SCA) attacks manifest a significant challenge to the security of cryptographic devices. In turn, it is generally quite expensive to protect from SCAs (energy, area, performance etc.). In this work we exhibit a significant change in paradigm for SCA attacks: our proposed attack is quite different from conventional SCA attacks and is able to filter out physical measurement noise, algorithmic noise, as well as thwart various countermeasures, and extract information from the entire leakage waveform as a whole and not only points-of-interest. We demonstrate on measured devices break of masking schemes of orders 2 and 3, supported by a model and also shuffling and dual-rail based countermeasures model; all performed efficiently with the same methodology, and with orders of magnitude less measurements and smaller computation time; underpinning the importance of this form of attack. In essence, in our attack we assume nothing different than a standard side-channel attack, i.e., a known plaintext scenario. However, we further group and classify leakages associated with specific subsets of plaintexts bits. The fact that we group specific (sub-)plaintexts associated leakages, and than in the next stage group or concatenate the associated leakages of these large groups in a predefined ordered sequence (modulation), enables far stronger attacks against SCA protected and unprotected designs. The evaluation-domain or the modulation-domain is the frequency domain in which per frequency it is possible to build a two feature constellation diagrams (amplitude and phase) and construct distinguishers over these diagrams. On top of the methodological contribution of this new SCA, the main observation we push forward is that practically such an attack is devastating for many countermeasures we were used to consider as secure to some level, such as masking or shuffling with large permutation size. As an example, leakage from a third order masked design can be detected with merely 100 leakage traces from the first statistical moment of the leakage as compared to 1510615\cdot10^6 traces with conventional SCA leakage detection test from the third statistical order

    Revealing the Secrets of Radio-Enabled Embedded Systems: on extraction of raw information from any on-board signal through RF

    Get PDF
    In this work we are interested in evaluating the possibility of extracting information from radio-enabled embedded-systems from a long distance. That is, our focus is capturing information from sources in the micrometer to tens of centimeters scale, such as intra- or inter- device busses, board-level routing traces etc. Moreover, we focus on distances in the range of millimeters to tens of centimeters from the (on-chip or on-board) embedded-system Tx Antenna to the signal source. Side-channels denotes presence of information in illegitimate channels. Side-channel analysis (SCA) attacks typically require statistical analysis and many leakage traces, focusing on micrometer level signals (sources) which emanate direct Near-Field information up to centimeters-level distances. In the same context (Near-Field and micrometer-level) simple power analysis (SPA) like attacks typically extract either direct raw information from one or few leakages or utilize statistical analysis on various samples from the same trace, similarly to horizontal attacks. Lately, radio-enabled systems were shown to emanate to a large distance (Far-Field), information from micrometer level sources, such as CPU processing, through the RF Tx Antenna: so far, SCA-like statistical analysis were shown. On the other hand, various reports exist on direct information eavesdropping/ sniffing or data exfiltration, emanated from centimeter to tens of centimeters scale sources, e.g., SATA, USB, Power-lines, Serial interface, Air-Gap systems, Screens and even optical fibers. All these elements are typically being used as a source and a direct Tx Antenna (huge, several to tens of centimeters) of the sensitive information. These antennas typically transmit information to short distances and the decay is very steep (proportional to r2r^{-2}-r3r^{-3} depending on various factors and models). To the best of our knowledge, we report here for the first time an alarming security challenge: any signal in the embedded system, from serial ports, DMA-controlled memory-access, JTAG and SPI interfaces, on-board signals with galvanic connection to the Tx Antenna-chip and \emph{on-board signals without galvanic connection to the Tx Antenna-chip itself, all leak direct information up to tens of centimeters from source to the Tx Antenna}. This alarming situation induce signal-integrity implications within the embedded system, and significant implications relating to device-isolation and user-isolation, it may also affect standards and specifications for e.g., electromagnetic compatibility (EMC), on-board signal shielding, electromagnetic and RF interference (EMI, RFI), cross-talk, and generally design-for-manufacturing (DFM) guidelines for both intra-IC and PCB board. We demonstrate such direct readout of signals with commercial and low-cost equipment indicating how problematic the situation is. The existence of such leakage is demonstrated both over an ultra-low-cost platform such as the nRF52832(nRF) embedded-system and on a more advanced ESP32-c3-devkitc-02 board which is far more widespread in ISM radio applications and meets certification like FCC and CE (as compared to the nRF device). We have constructed an experiment to demonstrate leakage scenarios from (1) on- and (2) off-chip, on-board or (3) signals without galvanic connection to the RF front-end chip, showing the severity of the leakage, repetitively and systematic nature of the phenomena over various devices. We further demonstrate how sophisticated adversaries can build a code-injection Gadget which can carry sensitive-data and modulate it to be best extracted by the RF-channel. The main observation we push forward is that unless concrete interference and isolation standards appear with security metrics in mind, which are significantly different than ones needed for communication, it would be hard to prevent such leakages

    Hardware Private Circuits: From Trivial Composition to Full Verification

    Get PDF
    International audienceThe design of glitch-resistant higher-order masking schemes is an important challenge in cryptographic engineering. A recent work by Moos et al. (CHES 2019) showed that most published schemes (and all efficient ones) exhibit local or composability flaws at high security orders, leaving a critical gap in the literature on hardware masking. In this paper, we first extend the simulatability framework of Belaïd et al. (EUROCRYPT 2016) and prove that a compositional strategy that is correct without glitches remains valid with glitches. We then use this extended framework to prove the first masked gadgets that enable trivial composition with glitches at arbitrary orders. We show that the resulting "Hardware Private Circuits" approach the implementation efficiency of previous (flawed) schemes. We finally investigate how trivial composition can serve as a basis for a tool that allows verifying full masked hardware implementations (e.g., of complete block ciphers) at any security order from their HDL code. As side products, we improve the randomness complexity of the best published refreshing gadgets, show that some S-box representations allow latency reductions and confirm practical claims based on implementation results

    Alcohol use and burden for 195 countries and territories, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    Background Alcohol use is a leading risk factor for death and disability, but its overall association with health remains complex given the possible protective effects of moderate alcohol consumption on some conditions. With our comprehensive approach to health accounting within the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we generated improved estimates of alcohol use and alcohol-attributable deaths and disability-adjusted life-years (DALYs) for 195 locations from 1990 to 2016, for both sexes and for 5-year age groups between the ages of 15 years and 95 years and older. Methods Using 694 data sources of individual and population-level alcohol consumption, along with 592 prospective and retrospective studies on the risk of alcohol use, we produced estimates of the prevalence of current drinking, abstention, the distribution of alcohol consumption among current drinkers in standard drinks daily (defined as 10 g of pure ethyl alcohol), and alcohol-attributable deaths and DALYs. We made several methodological improvements compared with previous estimates: first, we adjusted alcohol sales estimates to take into account tourist and unrecorded consumption; second, we did a new meta-analysis of relative risks for 23 health outcomes associated with alcohol use; and third, we developed a new method to quantify the level of alcohol consumption that minimises the overall risk to individual health. Findings Globally, alcohol use was the seventh leading risk factor for both deaths and DALYs in 2016, accounting for 2.2% (95% uncertainty interval [UI] 1.5-3.0) of age-standardised female deaths and 6.8% (5.8-8.0) of age-standardised male deaths. Among the population aged 15-49 years, alcohol use was the leading risk factor globally in 2016, with 3.8% (95% UI 3.2-4-3) of female deaths and 12.2% (10.8-13-6) of male deaths attributable to alcohol use. For the population aged 15-49 years, female attributable DALYs were 2.3% (95% UI 2.0-2.6) and male attributable DALYs were 8.9% (7.8-9.9). The three leading causes of attributable deaths in this age group were tuberculosis (1.4% [95% UI 1. 0-1. 7] of total deaths), road injuries (1.2% [0.7-1.9]), and self-harm (1.1% [0.6-1.5]). For populations aged 50 years and older, cancers accounted for a large proportion of total alcohol-attributable deaths in 2016, constituting 27.1% (95% UI 21.2-33.3) of total alcohol-attributable female deaths and 18.9% (15.3-22.6) of male deaths. The level of alcohol consumption that minimised harm across health outcomes was zero (95% UI 0.0-0.8) standard drinks per week. Interpretation Alcohol use is a leading risk factor for global disease burden and causes substantial health loss. We found that the risk of all-cause mortality, and of cancers specifically, rises with increasing levels of consumption, and the level of consumption that minimises health loss is zero. These results suggest that alcohol control policies might need to be revised worldwide, refocusing on efforts to lower overall population-level consumption.Peer reviewe

    Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016

    Get PDF
    The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    Get PDF
    Copyright © 2018 The Author(s). Published by Elsevier Ltd. Background A key component of achieving universal health coverage is ensuring that all populations have access to quality health care. Examining where gains have occurred or progress has faltered across and within countries is crucial to guiding decisions and strategies for future improvement. We used the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) to assess personal health-care access and quality with the Healthcare Access and Quality (HAQ) Index for 195 countries and territories, as well as subnational locations in seven countries, from 1990 to 2016. Methods Drawing from established methods and updated estimates from GBD 2016, we used 32 causes from which death should not occur in the presence of effective care to approximate personal health-care access and quality by location and over time. To better isolate potential effects of personal health-care access and quality from underlying risk factor patterns, we risk-standardised cause-specific deaths due to non-cancers by location-year, replacing the local joint exposure of environmental and behavioural risks with the global level of exposure. Supported by the expansion of cancer registry data in GBD 2016, we used mortality-to-incidence ratios for cancers instead of risk-standardised death rates to provide a stronger signal of the effects of personal health care and access on cancer survival. We transformed each cause to a scale of 0-100, with 0 as the first percentile (worst) observed between 1990 and 2016, and 100 as the 99th percentile (best); we set these thresholds at the country level, and then applied them to subnational locations. We applied a principal components analysis to construct the HAQ Index using all scaled cause values, providing an overall score of 0-100 of personal health-care access and quality by location over time. We then compared HAQ Index levels and trends by quintiles on the Socio-demographic Index (SDI), a summary measure of overall development. As derived from the broader GBD study and other data sources, we examined relationships between national HAQ Index scores and potential correlates of performance, such as total health spending per capita. Findings In 2016, HAQ Index performance spanned from a high of 97·1 (95% UI 95·8-98·1) in Iceland, followed by 96·6 (94·9-97·9) in Norway and 96·1 (94·5-97·3) in the Netherlands, to values as low as 18·6 (13·1-24·4) in the Central African Republic, 19·0 (14·3-23·7) in Somalia, and 23·4 (20·2-26·8) in Guinea-Bissau. The pace of progress achieved between 1990 and 2016 varied, with markedly faster improvements occurring between 2000 and 2016 for many countries in sub-Saharan Africa and southeast Asia, whereas several countries in Latin America and elsewhere saw progress stagnate after experiencing considerable advances in the HAQ Index between 1990 and 2000. Striking subnational disparities emerged in personal health-care access and quality, with China and India having particularly large gaps between locations with the highest and lowest scores in 2016. In China, performance ranged from 91·5 (89·1-93·6) in Beijing to 48·0 (43·4-53·2) in Tibet (a 43·5-point difference), while India saw a 30·8-point disparity, from 64·8 (59·6-68·8) in Goa to 34·0 (30·3-38·1) in Assam. Japan recorded the smallest range in subnational HAQ performance in 2016 (a 4·8-point difference), whereas differences between subnational locations with the highest and lowest HAQ Index values were more than two times as high for the USA and three times as high for England. State-level gaps in the HAQ Index in Mexico somewhat narrowed from 1990 to 2016 (from a 20·9-point to 17·0-point difference), whereas in Brazil, disparities slightly increased across states during this time (a 17·2-point to 20·4-point difference). Performance on the HAQ Index showed strong linkages to overall development, with high and high-middle SDI countries generally having higher scores and faster gains for non-communicable diseases. Nonetheless, countries across the development spectrum saw substantial gains in some key health service areas from 2000 to 2016, most notably vaccine-preventable diseases. Overall, national performance on the HAQ Index was positively associated with higher levels of total health spending per capita, as well as health systems inputs, but these relationships were quite heterogeneous, particularly among low-to-middle SDI countries. Interpretation GBD 2016 provides a more detailed understanding of past success and current challenges in improving personal health-care access and quality worldwide. Despite substantial gains since 2000, many low-SDI and middle- SDI countries face considerable challenges unless heightened policy action and investments focus on advancing access to and quality of health care across key health services, especially non-communicable diseases. Stagnating or minimal improvements experienced by several low-middle to high-middle SDI countries could reflect the complexities of re-orienting both primary and secondary health-care services beyond the more limited foci of the Millennium Development Goals. Alongside initiatives to strengthen public health programmes, the pursuit of universal health coverage hinges upon improving both access and quality worldwide, and thus requires adopting a more comprehensive view - and subsequent provision - of quality health care for all populations
    corecore